
Research & Industry

Code
0

Code
1

Code
2

Code
3

Pr
og

La

ng
 1 Lib

1
Lib
2

Lib
3

Driver 1 Driver 2 Driver 3

Workload 1

Sy
st

em
Ar

ch
Ap

p

Lib
1

Lib
2

Lib
3Pr

og

La
ng

 2

Workload 2

Pr
og

La

ng
 1 Runtime

Library

Workload 1

Sy
st

em
Ar

ch
Ap

p

Runtime
LibraryPr

og

La
ng

 2

Workload 2

Ru
nt

im
e

Code 1 Code 2 Code 3Code 0

Shared Memory

Multi-Threaded
Binary

Multi-Threaded
Binary

Code
0

Code
1

Code
2

Code
3

Shared Memory

Scalable and Secure Systems
Zixuan Wang
UC San Diego

Fun FactsZixuan Wang

“Integration Cost”
M
em

M
em

Storage

Network

Let’s make a single
thing fast!

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Year

50 Years of Microprocessor Trend Data

https://github.com/karlrupp/microprocessor-trend-data

Until it stops
scaling…

M
em

M
em

Storage

GPUNetwork

DPU

Let’s integrate many
fast things!

Until things get
exponentially

complex…

M
em

M
em

Storage

GPUNetwork

DPU

Now I’m making
it easy to

integrate things

Sy
st

em
Ar

ch
Ap

p

SecurityCapability Programma
bility

LENS &
VANS

[MICRO, TopPicks]

NVLeak
[USENIX Security]

Ayudante
[USENIX ATC]

COARSE
[HPCA]

WPerf
[ISSTA SRC]

CVM
[Google, Meta]

CXLeak
(Ongoing)

CodeFlow
(Ongoing)

CodeFlow
(Ongoing)

Scan to access my website

www.TheNetAdmin.net
PhD Candidate
UC San Diego

Working with Jishen Zhao

Past My Research Future

System Scalability and Security

LLM Training & Inference
Vector Database
KV-Store
Traditional workloads

Application

Compiler & library support
More language supports
Compiler optimizations

Programming

Just-in-time compilation
Abstraction of common operations
Abstraction of system resources
Extension for new accelerators
Runtime security

Runtime

Code scheduling
Shared memory support
Resource isolation
Trusted execution

System

Unified integration to the runtime
Arch-level optimization
Mitigating arch attacks
Trusted execution

Architecture

Modeling new hardware perf.
Modeling integration cost
H/W interface for the runtime

Hardware

Little to no modification to
existing code and programming
exercise.

Low overhead, good
abstraction

Compile once, run
everywhere

Accelerators exchange
code and data in a unified
approach

We must do it this way, in the past…
à Due to customized protocols
à How about now?

Programming is exponentially complex
à Limiting the # of arch integrated
à Bad scalability
à More vulnerabilities

Scalability: Make accelerators talk in the same language
à A unified intermediated layer

à Code compiled to one representation
à Accelerators integrate to one layer

à Efforts: COARSE, WPerf, CodeFlow

Security: A systematic analysis framework
à Unbox the arch design black-box
à Attack and mitigate
à Efforts: LENS, NVLeak, CXLeak

Research:
- Arch security
- System for ML
- System for emerging arch

Industry – CVM:
- Google’21: AMD SEV & SEV-ES
- Meta’22: AMD SEV-SNP
- Google’23: AMD SEV-SNP SVSM

https://github.com/karlrupp/microprocessor-trend-data
http://www.thenetadmin.net/

